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Overview & Summary of Results 
• Objective: To compare and assess 9 different methods for monitoring spatio-

temporal variations in annual GPP in different biomes using satellite observations  

• Methods:  We employed 489 site years of data from 168 sites in the LaThuile dataset 
to examine the agreement between  
– (i) mean annual GPP from tower fluxes and satellite models and proxies1, and   
– (ii) annual anomalies in GPP from tower fluxes  and satellite models and proxies. 

• Key findings:  
– Spatial variation in mean annual GPP  

• In cropland and deciduous broadleaf forests none of the proxies or models  
performed well. 

• In the remaining biomes, the simplest model, which combined mean 
growing season EVI with biome-dependent mean annual climate variables 
had the best agreement  (R2 ~0.6 - 0.8) and low bias.   

– Variation in annual anomalies  
• In cropland and deciduous broadleaf forests none of the proxies or models  

were able to explain interannual variation in GPP. 
• In the remaining biomes, a neural network model estimated at daily time 

scale using PAR, air temperature, vapor pressure deficit and FPAR as inputs 
explained the most variance, with R2 ranging from  0.4 to 0.75.  

 
1 We define a proxy in this context as an index derived from seasonal time series of remotely sensed observations 

(e.g., mean growing season EVI).   
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Background & Justification  

• Terrestrial gross primary productivity (GPP) is the 
largest  carbon flux (Beer et al., 2010).  

• Regular monitoring of terrestrial GPP is required to 
understand the global carbon cycle, future climate, 
availability of food (Bunn et al., 2006) and to evaluate 
climate mitigation programs such as United Nations 
Reducing Emissions from Degradation and 
deforestation (UN-REDD).  

• Different methods that use satellite data have been 
proposed to compute temporally continuous and 
spatially extensive estimates of GPP.  
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Background & Justification 

These methods can be divided into two broad approaches: 

• In the first approach, satellite based metrics including the mean growing 
season VI (NDVI or EVI), the integral of growing season VI (EVI-area), or 
the growing period length (GPL) are assumed to reflect spatio-temporal 
patterns in ecosystem productivity (Myneni et al., 1998; Zhou et al., 2001; 
Angert et al., 2005; Goetz et al., 2005) because of their relationship with 
vegetation phenology and total leaf area (Tucker at al., 2001; Slayback et 
al., 2003). Throughout this presentation we will refer to these metrics as 
‘proxies’.  

• In the second approach, satellite data is combined with meteorological 
variables to model daily or 8-day estimates of GPP.  Three types of models 
have been used in this context : (i) light use efficiency models (Running et 
al., 2004), (ii) simpler models based on EVI and land surface temperature 
(Sims et al., 2008), and (iii) nonlinear, data dependent  models based on 
machine learning algorithms (Xiao et al., 2010).  
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Background & Justification 

• Here we examine the suitability of 9 different satellite based 
proxies and models to capture the variability in annual GPP in 
two main dimensions (Richardson et al., 2010). 

– Spatial variation in mean annual GPP: This mode of 
variance lets us answer questions related to variations in 
GPP over space (e.g. Which area was most productive in 
the last five years?).  

– Temporal (inter-annual) variation in GPP: This mode of 
variance on the  other hand helps us investigate variations 
in GPP over time (e.g. Which year was most productive in 
the last five years?).  
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Motivating Questions 
• While photosynthesis at leaf and canopy level is well understood, a great deal 

of uncertainty remains about drivers of and controls on spatio-temporal 
variations in ecosystem level productivity (Beer et al., 2010).  

• It would therefore be useful to understand how different satellite-based 
proxies and models (which represent different hypotheses and are calculated 
at different time scales) vary in their ability to capture variation in annual GPP 
in space and time in different biomes. In particular we posed the following 
questions: 

– Are satellite based models or proxies more successful in tracking spatial 
versus temporal variance in GPP at annual time scales? 

– Are satellite-derived metrics calculated at high temporal resolution better 
than annual metrics in capturing variability in annual GPP? 

– Are more complex models better than simpler models and proxies in 
capturing spatial and temporal variance in annual GPP?  
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Objectives 
The goal of this work is to use GPP and meteorological data from the La Thuile data set in 
association with satellite-derived observations to assess how well different remote sensing 
proxies and model are able to capture spatial and temporal variation in annual GPP. To do this 
we focused on the two different approaches described on slide 4.  Specifically, we evaluated 
how well spatial and temporal variation in annual tower GPP in different biomes is captured by:  

1. Four different MODIS-based proxies:  

• mean growing season EVI & NDVI, growing period length (GPL) & growing season EVI-
area.  

2. GPP models based on MODIS and different combinations of met forcing data: 

• The temperature-greenness (TG) model (Sims et al., 2008); 

• The vegetation photosynthesis & respiration model (VPRM) (Mahadevan et al., 2008),  

• MODIS GPP (MOD17; Running et al., 2004); 

•  A neural network model ;  

• MOD17 recalibrated and estimated using tower data (Heinsch et al., 2006; referred to 
as ‘MOD17-Tower’).  

• In addition, we also developed and evaluated a simple regression model using mean 
EVI and mean climatic covariates (temperature or precipitation depending on biome) 
as predictors.  
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Two satellite data based approaches – an schematic 
representation   

Proxies of GPP 

NDVI/EVI 

8-day  

Annual 

Integral of VI 

Annual 
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Annual 

Analysis Framework 
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Analysis Framework 

 

Proxy/Model Input variables Parameters Output 

Mean growing 
season NDVI/EVI. 

8-day NDVI/EVI 
 

None It is assumed that 
proxies are highly 
correlated with GPP 
and thus variations in 
proxies indicate 
variations in GPP. 

EVI-area/ GPL 8-day EVI None 

TG 8-day EVI, day and night land 
surface temperature.  

2 parameters for 
deciduous and 
evergreen biomes 

8-day GPP 

VPRM 8-day EVI, LSWI,  
Daily PAR,  air temperature 

3 biome specific 
parameters. 

Daily GPP. 

MOD17 Daily PAR, minimum temperature 
and VPD  
8-day FPAR.  

5 biome specific 
parameters 

Daily GPP 

Neural network  Daily PAR, minimum  
temperature,  VPD  
8-day FPAR 

Non-parametric .  Daily GPP.  
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Analysis Framework  

Proxy/ 
Model 

Underlying hypothesis about spatio-
temporal variation in ecosystem level 
GPP 

Assumptions about unrepresented 
processes and parameters 

Mean 
EVI/NDVI 

Variations in GPP arise because of the 
difference in amount of green material (and 
hence absorbed PAR)  

Other variables , known to affect photosynthesis, 
either co-vary with the selected variable or 
become insignificant at coarse temporal and 
spatial resolution. 
 
 

GPL Growing period length controls GPP.   

Integral of 
NDVI/EVI 

Variations in GPP are controlled by amount 
of greenness and GPL. 

TG model  Variations in GPP are controlled by 
greenness modulated by temperature.    

Other meteorological variables are not 
important at 8-day time scale.  Model parameter 
vary across space (but not time) and depends on 
mean annual night temperature.    

MOD17/ 
VPRM 

Ecosystem level GPP at daily time scale is 
controlled by the same processes as 
instantaneous leaf or canopy level GPP.    

Parameters are biome specific and remain 
constant over time and space.  

NN  Ecosystem level GPP is controlled by the 
same variables as are used in MOD17, but 
they interact in a complex, nonlinear way.  

No constraint  about spatial and temporal 
variability  is imposed on weights.  

They  also represent different hypotheses about the underlying drivers of GPP. 
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Analysis Framework 

Modes of GPP 
variability 

Magnitude of 
Variability 

Main drivers Comment 

Site to site 
(spatial) variability 
in mean annual 
GPP 

Large variability in 
every biome – typically 
ranges from 400 to 
2500 gC/m2/year 
(higher for EBF).   

Difference in 
phenology, absorbed 
PAR and 
temperature and/or 
moisture availability 

From biome to 
biome the dominant 
meteorological 
constraint may be 
different.  

Interannual 
(temporal) 
variability in GPP.  
 

Usually 10-15% of 
mean annual GPP. An 
order of magnitude 
smaller than spatial 
variations.  

May differ from site 
to site and biotic 
factors may also play 
an important role.  

Uncertainty in 
satellite based 
estimates  may be of 
the same order as 
inter-annual 
variations.  

11 

Modes and drivers of variability in annual GPP along space and time are different 



Structure of Study 
• We examined the ability of different proxies & models to capture variation in annual GPP over 

space and time. Along each dimension (space and time), we performed the following analysis: 

1. We first compared variations in annual tower GPP with the corresponding variations in 
four remotely sensed proxies (mean NDVI and EVI, GPL and EVI area). This step let us 
examine how strongly simple variables such as phenology and leaf area control annual 
GPP along the two dimensions in different biomes.   

2. Next we compared  GPP predicted from six different models with tower GPP (slide 7).  Of 
the six models, the TG model was based entirely on MODIS data (EVI +LST).  MOD17 is 
available as a product and is based on MODIS FAPAR and coarse resolution 
meteorological data.  The remaining four models – VPRM, NN, MOD17-Tower and 
EVI+Met – were calibrated to tower GPP using meteorological data from flux towers and 
MODIS FAPAR data. This analysis allowed us to evaluate how models of different 
complexity and resolution compare against each other in capturing variations in GPP.  

• All analyses were stratified by biome type.  We pooled in data from the biomes that had less 
than 10 sites (savannas, woody savannas, open shrubland, closed shrubland and mixed forest) 

and labeled the group as OTH (OTHER) .  
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FLUXNET Data  

Biome wise daily FLUXNET data used in the study that satisfied the above two conditions 
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Where 
CRO – Cropland;  DBF – Deciduous broadleaf forests 
ENF – Evergreen needleleaf forests; EBF – Evergreen broadleaf forests 
GRA – Grassland; OTH ER– Mix of savannas, shrubland and mixed forest. 

Following Richardson et al. (2010),  working with daily files from La Thuile dataset we 
selected the site years that satisfied the following two conditions : 
 (i) Less  than 5% of the days in the year had missing data. 
 (ii) Mean annual QC was at least 0.75 

We used daily GPP, PAR, temperature and precipitation data from  the LaThuile dataset. 

Vegetation 
Type 

CRO DBF ENF EBF GRA OTHER TOTAL 

No. of site 21 25 49 16 29 24 164 

Total site years 43 79 177 43 85 59 486 



MODIS Data and Model Calibration 
We used  the following MODIS data in this study:  

– BRDF corrected surface reflectance from MCD43A4.  

– Land surface phenology and EVI-area from MCD12. 

– Day and night land surface temperature (LST) from MOD11A2. 

– Fraction of absorbed PAR from MOD15.   

– GPP from MOD17. 

• The TG model was estimated following Sims et al. (2008).  

• VPRM and MOD17-Tower were calibrated to daily tower GPP by minimizing the sum of 
squares for observed versus predicted daily GPP.  The neural network model was 
calibrated by minimizing the difference between daily modeled and observed values.  

• Estimates of the TG model for evergreen broadleaf forests (EBF) were not computed. 
Similarly, GPL and EVI-area were not extracted for EBF. 

• Following earlier studies (Sims et al, 2008); we used a 3 by 3 kilometer window 
centered on each FLUXNET site.  Thus, we averaged 1 km data (e.g. MOD17) in 3-by-3 
windows and 500 m (e.g. EVI) in 7-by-7 windows. 
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Analysis I: Spatial Variation in Mean Annual GPP  
• We first examined correlation of mean annual tower GPP with the four remotely 

sensed proxies - mean growing season NDVI and EVI; growing period length, and 
integral of growing season EVI. 

• Based on results from the first step and the fact that site to site variation in annual 
productivity in many biomes is often limited by a single variable (Garbulsky et al., 
2010; Beer et al., 2010), we developed a regression model combining mean EVI and  
climatic covariates (temperature or precipitation) as predictors of annual GPP.  This 
model is referred to as ‘EVI+Met’.  

• We then examined the agreement between mean annual GPP from six models (TG, 
MOD17, NN, VPRM, MOD17-Tower and EVI+Met) and tower fluxes.  We used R2, root 
mean square error (RMSE ), mean bias error (MBE) and regression slopes to assess 
the agreement.  MBE was calculated as a simple mean of observed minus predicted 
values.  

• We used a leave-one-site-out cross-validation strategy for all comparisons. 
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Analysis II: Inter-Annual Variation in GPP 

• We followed the same steps that we used in Analysis I, focusing on 
whether the proxies or models captured interannual variation in 
annual GPP.  

• We first estimated  R2 between annual anomalies of the four proxies 
and tower GPP.  

• Next, we examined the agreement between annual anomalies from 
the five models and tower fluxes. The EVI+Met model was not used in 
this analysis because the two predictors  (mean EVI and mean 
minimum temperature or precipitation) did not explain statistically 
significant variance in annual anomalies of tower GPP.  

• As in the  previous step, we used cross-validation, but only used sites 
that had 3 or more years of data.  
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Results I 

 
 

Spatial variation in mean annual 
GPP  

 
 



 
Result – Proxies  
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Vegetation 
type 

Sample size 

CRO 21 

DBF 25 

ENF 49 

EBF 16 

GRA 29 

OTH 24 

1. None of the proxies was able to capture variations in CRO and DBF.  
2. In the remaining four biomes, mean EVI and/or EVI-area were able to 

capture approximately half the total variance in annual GPP.  
3. Mean NDVI, which has been used in several studies, had weaker 

correlation than mean EVI and EVI-area.   

R2 between mean annual tower GPP and the four MODIS proxies 

CRO DBF ENF EBF GRA OTH
0
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Modeling Annual GPP Using Mean EVI and 
Climatic Covariates 

We regressed mean EVI with annual GPP and examined the relationship of model 
residuals with mean minimum temperature (TMIN used in MOD17 algorithm) and 
precipitation.  
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1. Residuals show significant correlation 
with TMIN or precipitation. There is a 
tendency for residuals to be  
negatively correlated with 
temperature after about 10 degree 
Celsius. Similarly, precipitation 
dependence seems to be asymptotic.   

2. However, to keep the model simple 
within the range of data used here, 
we used linear regression to combine 
mean EVI with mean minimum 
temperature  (DBF and ENF) or 
precipitation (EBF, GRA and OTH) to 
model mean annual GPP. This model is 
labeled  EVI+Met.  

  
 

 



Result – Models  
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Cross-validated R2 and RMSE between mean annual tower GPP 
and the corresponding values from the six models  

1. None of the models, including the four that were calibrated to tower GPP 
using high quality meteorological data from tower, was able to explain 
variance for CRO and DBF.  

2. In the remaining biomes, the linear model that uses mean growing season EVI 
and mean daily minimum temperature or precipitation as predictors 
performed better than any of the other models and proxies. 
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 Result– Models  
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Cross-Validated MBE and slope between mean annual tower 
GPP and corresponding values from the six models  

1. Except MOD17 and VPRM, all other models had near zero mean bias. Of these, 
only the EVI+Met model had a slope close to 1.0.  For the other models, low bias was 
spurious - systematic under and over-estimation leading to compensating errors.    
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Scatter plot of mean annual tower GPP and corresponding values predicted by the 
regression model based on mean EVI and minimum temperature or precipitation 

Result– Models 
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1. Model results do not 
exhibit systematic bias 
and are randomly 
distributed around the 
1:1 line.  



Part I - Conclusions 
• None of the four proxies and six models could capture variations in 

mean annual GPP in CRO and DBF.   

• In the remaining four biomes, the remotely sensed proxies captured 
significant spatial variation in mean annual GPP.    

• The EVI+Met model was significantly better in all four criteria (R2 , 
RMSE, MBE and slope)  than all the other models and proxies, including  
NN, VPRM and MOD17-Tower, which were calculated at daily time step 
using high quality tower data.  

• The remaining models did not have significantly different R2 (except in 
EBF) than EVI-area  and/or mean EVI, the two simple proxies.  
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Results II 

 
 

Inter-annual variation in GPP  
 
 



Results – Proxies 

25 

Vegetation 
type  

Sample size       

CRO   18 

DBF   61 

ENF   147 

EBF   28 

GRA   61 

OTH   38 

1. None of the proxies explained inter-annual variation in tower GPP in CRO, DBF, 
ENF and OTH.   

2. In GRA and EBF, mean NDVI and EVI were moderately successful in explaining 
variance in tower GPP (R2 of ~0.4).  But for two anomalous values, R2 in GRA 
could be significantly higher (see the next slide).  

 

Cross-validated R2 between anomalies of annual tower GPP and 
corresponding values from the proxies* 

CRO DBF ENF EBF GRA OTH
0

0.2

0.4

0.6

0.8

1
R-square

 

 

NDVI

EVI

EVI-area

GPL

*sites with 3 or more years of data.  



Result– Proxies 
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Results – Models 
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Cross-validated R2 between annual anomalies of tower and modeled GPP* 

After removing the anomalies that 
were less than 10% of mean site GPP. 

1. None of the models was able to explain inter-annual variation in CRO and DBF.  
2. In the remaining 4 biomes, NN had an R2 ranging from 0.4 to 0.75 after removing 

anomalies that were less than 10% of mean site GPP.   
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*for sites with 3 or more years of data  
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Scatter plots of annual anomalies for tower and two models: NN and MOD17-Tower.   

MOD17-Tower Neural Network 



Part II – Conclusions 
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1. The four satellite proxies did not explain inter-annual variations in CRO, 
DBF, ENF and OTH. In the remaining two biomes mean NDVI and EVI 
captured about 40% of the total variance.  

2. None of the models captured inter-annual variations in CRO and DBF. For 
the remaining four biomes, the neural network was moderately successful 
in explaining variance (R2 ~ 0.45-0.75), probably because it captured 
seasonal scale anomalies in forcing data or non-linear responses of GPP to 
(and interactions among) climate forcing and remotely sensed proxies.  

3. In CRO and DBF, models and proxies of different complexity and resolution 
could not capture spatial or temporal variations in annual GPP.  
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